Class Statistics
- Namespace
- BenchmarkDotNet.Mathematics
- Assembly
- BenchmarkDotNet.dll
public class Statistics
- Inheritance
-
Statistics
- Extension Methods
Constructors
Statistics(Sample)
public Statistics(Sample sample)
Parameters
sampleSample
Statistics(IEnumerable<double>)
public Statistics(IEnumerable<double> values)
Parameters
valuesIEnumerable<double>
Statistics(IEnumerable<int>)
public Statistics(IEnumerable<int> values)
Parameters
valuesIEnumerable<int>
Statistics(params double[])
public Statistics(params double[] values)
Parameters
valuesdouble[]
Properties
AllOutliers
public double[] AllOutliers { get; }
Property Value
- double[]
ConfidenceInterval
public LegacyConfidenceInterval ConfidenceInterval { get; }
Property Value
InterquartileRange
public double InterquartileRange { get; }
Property Value
Kurtosis
public double Kurtosis { get; }
Property Value
LowerFence
public double LowerFence { get; }
Property Value
LowerOutliers
public double[] LowerOutliers { get; }
Property Value
- double[]
Max
public double Max { get; }
Property Value
Mean
public double Mean { get; }
Property Value
Median
public double Median { get; }
Property Value
Min
public double Min { get; }
Property Value
N
public int N { get; }
Property Value
OriginalValues
public IReadOnlyList<double> OriginalValues { get; }
Property Value
Percentiles
public PercentileValues Percentiles { get; }
Property Value
Q1
public double Q1 { get; }
Property Value
Q3
public double Q3 { get; }
Property Value
Skewness
public double Skewness { get; }
Property Value
StandardDeviation
public double StandardDeviation { get; }
Property Value
StandardError
public double StandardError { get; }
Property Value
UpperFence
public double UpperFence { get; }
Property Value
UpperOutliers
public double[] UpperOutliers { get; }
Property Value
- double[]
Variance
public double Variance { get; }
Property Value
Methods
CalcCentralMoment(int)
public double CalcCentralMoment(int k)
Parameters
kint
Returns
CanBeInverted()
Returns true, if this statistics can be inverted (see Invert()).
public bool CanBeInverted()
Returns
DivMean(Statistics?, Statistics?)
Mean for [X/Y].
public static double DivMean(Statistics? x, Statistics? y)
Parameters
xStatisticsyStatistics
Returns
Divide(Statistics, Statistics)
public static Statistics Divide(Statistics x, Statistics y)
Parameters
xStatisticsyStatistics
Returns
GetActualOutliers(OutlierMode)
public double[] GetActualOutliers(OutlierMode outlierMode)
Parameters
outlierModeOutlierMode
Returns
- double[]
GetConfidenceInterval(ConfidenceLevel)
public ConfidenceInterval GetConfidenceInterval(ConfidenceLevel level)
Parameters
levelConfidenceLevel
Returns
- ConfidenceInterval
Invert()
Statistics for [1/X]. If Min is less then or equal to 0, returns null.
public Statistics Invert()
Returns
IsActualOutlier(double, OutlierMode)
public bool IsActualOutlier(double value, OutlierMode outlierMode)
Parameters
valuedoubleoutlierModeOutlierMode
Returns
IsLowerOutlier(double)
public bool IsLowerOutlier(double value)
Parameters
valuedouble
Returns
IsOutlier(double)
public bool IsOutlier(double value)
Parameters
valuedouble
Returns
IsUpperOutlier(double)
public bool IsUpperOutlier(double value)
Parameters
valuedouble
Returns
MulMean(Statistics, Statistics)
Mean for [X*Y].
public static double MulMean(Statistics x, Statistics y)
Parameters
xStatisticsyStatistics
Returns
ToString()
public override string ToString()
Returns
WithoutOutliers()
public double[] WithoutOutliers()
Returns
- double[]